Greedy Approaches to Symmetric Orthogonal Tensor Decomposition
نویسندگان
چکیده
Finding the symmetric and orthogonal decomposition (SOD) of a tensor is a recurring problem in signal processing, machine learning and statistics. In this paper, we review, establish and compare the perturbation bounds for two natural types of incremental rank-one approximation approaches. Numerical experiments and open questions are also presented and discussed.
منابع مشابه
Orthogonal Tensor Decomposition
In symmetric tensor decomposition one expresses a given symmetric tensor T a sum of tensor powers of a number of vectors: T = v⊗d 1 + · · · + v ⊗d k . Orthogonal decomposition is a special type of symmetric tensor decomposition in which in addition the vectors v1, ..., vk are required to be pairwise orthogonal. We study the properties of orthogonally decomposable tensors. In particular, we give...
متن کاملSymmetric Orthogonal Tensor Decomposition is Trivial
We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued, pairwise orthogonal vectors. Such decompositions do not generally exist, but we show that some symmetric tensor decomposition problems can be converted to orthogonal problems following the whitening procedure proposed by Anandkumar et al. (2012). If an orthogonal decomposition of a...
متن کاملNon-orthogonal tensor diagonalization
Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...
متن کاملProof of a decomposition theorem for symmetric tensors on spaces with constant curvature
In cosmological perturbation theory a first major step consists in the decomposition of the various perturbation amplitudes into scalar, vector and tensor perturbations, which mutually decouple. In performing this decomposition one uses – beside the Hodge decomposition for one-forms – an analogous decomposition of symmetric tensor fields of second rank on Riemannian manifolds with constant curv...
متن کاملTensor Decompositions for Learning Latent Variable Models Report Title
This work considers a computationally and statistically e?cient parameter estimation method for a wide class of latent variable models—including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor structure in their loworder observable moments (typically, of secondand third-order). Speci?cally, parameter estimation is reduced to the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 38 شماره
صفحات -
تاریخ انتشار 2017