Greedy Approaches to Symmetric Orthogonal Tensor Decomposition

نویسندگان

  • Cun Mu
  • Daniel J. Hsu
  • Donald Goldfarb
چکیده

Finding the symmetric and orthogonal decomposition (SOD) of a tensor is a recurring problem in signal processing, machine learning and statistics. In this paper, we review, establish and compare the perturbation bounds for two natural types of incremental rank-one approximation approaches. Numerical experiments and open questions are also presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Tensor Decomposition

In symmetric tensor decomposition one expresses a given symmetric tensor T a sum of tensor powers of a number of vectors: T = v⊗d 1 + · · · + v ⊗d k . Orthogonal decomposition is a special type of symmetric tensor decomposition in which in addition the vectors v1, ..., vk are required to be pairwise orthogonal. We study the properties of orthogonally decomposable tensors. In particular, we give...

متن کامل

Symmetric Orthogonal Tensor Decomposition is Trivial

We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued, pairwise orthogonal vectors. Such decompositions do not generally exist, but we show that some symmetric tensor decomposition problems can be converted to orthogonal problems following the whitening procedure proposed by Anandkumar et al. (2012). If an orthogonal decomposition of a...

متن کامل

Non-orthogonal tensor diagonalization

Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...

متن کامل

Proof of a decomposition theorem for symmetric tensors on spaces with constant curvature

In cosmological perturbation theory a first major step consists in the decomposition of the various perturbation amplitudes into scalar, vector and tensor perturbations, which mutually decouple. In performing this decomposition one uses – beside the Hodge decomposition for one-forms – an analogous decomposition of symmetric tensor fields of second rank on Riemannian manifolds with constant curv...

متن کامل

Tensor Decompositions for Learning Latent Variable Models Report Title

This work considers a computationally and statistically e?cient parameter estimation method for a wide class of latent variable models—including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor structure in their loworder observable moments (typically, of secondand third-order). Speci?cally, parameter estimation is reduced to the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2017